Optimal Taxation of Top Labor Incomes: A Tale of Three Elasticities

Thomas Piketty (PSE) Emmanuel Saez (Berkeley and NBER) Stefanie Stantcheva (MIT)

January 2012

- Top 1% share of income has surged in US and English-speaking countries (less so in Europe and Japan)
- ... while top tax rates have declined
- Possible explanations?
 - Market-driven skill-biased change (but why only some countries?)
 - Institution-driven (tolerance for pay and social norms change)
 - Taxes? (but through what channel?)

How do taxes affect the top 1% share and top incomes? Three narratives

• Standard supply side channel (Lindsey (1987), Feldstein (1995))

How do taxes affect the top 1% share and top incomes? Three narratives

- Standard supply side channel (Lindsey (1987), Feldstein (1995))
- Avoidance and income shifting (Slemrod (1996), Slemrod and Kopczuk (2002), Reynolds (2007))

How do taxes affect the top 1% share and top incomes? Three narratives

- Standard supply side channel (Lindsey (1987), Feldstein (1995))
- Avoidance and income shifting (Slemrod (1996), Slemrod and Kopczuk (2002), Reynolds (2007))
- Compensation bargaining and rent-extraction

Introduction: Goal of the Paper

This paper:

- Simple model capturing all three responses
- Derives optimal tax formula as a function of the three elasticities
- Takes a first pass at an empirical analysis
 - using long-term evidence for the US
 - using international evidence for 18 OECD countries since 1975

Introduction: Results of the Paper

Main theoretical results:

- Sole limiting factor is real supply-side (first) elasticity
- Avoidance (second) elasticity should be minimized
- Compensation bargaining (third) elasticity tends to increase taxes, potentially a lot

Illustrative Empirical results:

- Large total elasticity of $e = e_1 + e_2 + e_3 = 0.5$ (strong correlation between top tax rates and income)
- US evidence: avoidance channel is not full story $\Rightarrow e_2 < 0.1$
- ullet No correlation between top tax rates and growth: $\Rightarrow e_1$ small at the top
 - \Rightarrow $e_3 \simeq 0.3 \Rightarrow t = 83\%$ (compared to 57% in pure real supply side scenario).

Outline of the talk

- Standard model with real supply-side response
- Tax avoidance and income shifting responses
 - Pure Avoidance Model
 - Income Shifting Model
- Bargaining and rent-seeking responses
- Empirical evidence
 - US evidence
 - International evidence
 - Summary of scenarios
- Conclusion

Outline of the talk

- Standard model with real supply-side response
- Tax avoidance and income shifting responses
 - Pure Avoidance Model
 - Income Shifting Model
- Bargaining and rent-seeking responses
- Empirical evidence
 - US evidence
 - International evidence
 - Summary of scenarios
- Conclusion

Mirrlees Model for top income tax: Individual response

- z: taxable income
- Consider a constant tax rate τ for $z \geq \overline{z}$.
- Utility (no income effects):

$$u_i(c,z)=c-h_i(z)$$

with c = z - T(z), disposable income and $h_i()$ cost of effort, increasing and convex.

- Individual optimization: $h_i'\left(z_i\right) = (1-\tau) \Rightarrow z_i = z_i\left(1-\tau\right)$
- Aggregating over all individuals: $z = z(1 \tau)$.
- First elasticity: $e_1 = \frac{dz}{d(1-\tau)} \frac{(1-\tau)}{z}$.

Mirrlees Model for top income tax: Social Welfare Maximization

• Social welfare across agents of type i:

$$W = \int G(u_i) dv(i)$$

$$s.t: \int T(z_i) dv(i) \geq T_0[p]$$

- Marginal social welfare weight: $g_i = \frac{G'(u_i)}{p}$
- Optimal tax rate with g = 0 at the top (revenue maximizing rate):

$$au^* = rac{1}{1+\mathit{ae}_1}$$

with $a = z/(z - \overline{z}) > 1$.

Calibrating the formula (Diamond and Saez (2011))

- ullet a=1.5 for the US , approx 2 for Continental Europe
- e₁ hard to determine (Giertz, Saez and Slemrod (2011))

• Effective rate in US 42.5%, Europe reaches 60%.

Calibrating the formula (Diamond and Saez (2011))

- ullet a=1.5 for the US , approx 2 for Continental Europe
- e₁ hard to determine (Giertz, Saez and Slemrod (2011))

1
$$e_1 = 0.25 \implies \tau^* = 73\%$$

2
$$e_1 = 0.50 \Rightarrow \tau^* = 57\%$$

• Effective rate in US 42.5%, Europe reaches 60%.

Calibrating the formula (Diamond and Saez (2011))

- ullet a=1.5 for the US , approx 2 for Continental Europe
- e₁ hard to determine (Giertz, Saez and Slemrod (2011))

1
$$e_1 = 0.25 \Rightarrow \tau^* = 73\%$$

2
$$e_1 = 0.50 \Rightarrow \tau^* = 57\%$$

3
$$e_1 = 1$$
 $\Rightarrow \tau^* = 40\%$

• Effective rate in US 42.5%, Europe reaches 60%.

Outline of the talk

- Standard model with real supply-side response
- Tax avoidance and income shifting responses
 - Pure Avoidance Model
 - Income Shifting Model
- Bargaining and rent-seeking responses
- Empirical evidence
 - US evidence
 - International evidence
 - Summary of scenarios
- Conclusion

Definition: changes in reported income due to changes in form of compensation but not in its total level (keeping econ output constant) **Examples:** (Slemrod and Kopczuk (2002), Slemrod (1996))

- Shift to fringe benefits or deferred compensation (stock-options, future pensions)
- Increased consumption within firm (better offices, vacations as business travel, private use of corporate jets)
- Shifting profits from individual income tax base to corporate tax base (change in business organization)
- Re-characterization of ordinary income into tax favored capital gains
- Offshore accounts.

Unlike fundamental preferences, government can (potentially) affect evasion opportunities

Pure tax avoidance model: Individual Optimization

- Real income: y
- Sheltered income: x (taxed at t)
- Taxable income z = y x (taxed at $\tau > t$)
- Cost of sheltering income $d_i(x)$, increasing and covex (sheltered income less valuable and pure waste)
- Utility

$$u_{i}\left(c,y,x\right)=c-h_{i}\left(y\right)-d_{i}\left(x\right)$$

with $c = (1 - \tau) y + (\tau - t) x + R$ (R is virtual income $\tau \overline{z} - T(\overline{z})$).

• Solutions: $h'_i(y) = 1 - \tau \Rightarrow y_i = y_i(1 - \tau)$ and $d'_i(x) = \tau - t \Rightarrow x_i = x_i(\tau - t)$.

Pure tax avoidance model: Elasticities

- Standard supply side elasticity e_1 : $e_1 = \frac{dy}{d(1-\tau)} \frac{1-\tau}{y}$
- Avoidance "elasticity", e_2 : define s as the fraction of behavioral response due to evasion: $s = \frac{dx/d(\tau-t)}{dz/d(1-\tau)}$

$$e_2 = \frac{dx}{d(\tau - t)} \frac{1 - \tau}{z}$$

• Total elasticity, e, at t constant:

$$e = \frac{\partial z}{\partial (1 - \tau)} \frac{1 - \tau}{z}$$

Note that $e = \frac{y}{z}e_1 + e_2 = \frac{e_2}{s}$.

Pure tax avoidance model: optimal tax

Theorem

(Partial optimum) For a given t, the optimal tax rate is

$$au^* = rac{1+ ae_2}{1+ ae}$$

Theorem

(Full Optimum): If sheltering occurs only within top bracket,

$$t^*= au^*=rac{1}{1+\mathit{ae}}$$

(t becomes irrelevant).

Pure tax avoidance model: Comments

- If t = 0, standard model (irrelevant whether response of taxable income comes from real supply side or avoidance (Feldstein (1999)).
- If t > 0, fiscal externality. Government can improve efficiency with $\tau = t$
 - \Rightarrow only limiting factor is then real elasticity e_1 .
- Not all avoidance opportunities costless to remove
 - Some are creations of tax system itself; should be removed: exemption of fringe benefits, tax-exempt local bonds
 - Real and costly hurdles: informal economy (developing countries), off-shore evasion, lobbying and political constraints
 - ⇒ but modern economies should be able to minimize avoidance

Income Shifting: a simple model

- ullet Not all shifting purely wasteful o Ramsey taxation considerations
- Two sources of income, labor, y_L (taxed at τ_L above \overline{z}) and capital y_K (taxed at τ_K). Produced at respective costs h_{Li} (y_L) and h_{Ki} (y_K).
- Can shift x from labor to capital income at cost $d_i(x)$
- Taxable incomes: $z_L = y_L x$ $z_K = y_K + x$
- Utility

$$u_{i}\left(c,y_{L},y_{K},x\right)=c-h_{Li}\left(y_{L}\right)-h_{Ki}\left(y_{K}\right)-d_{i}\left(x\right)$$

where
$$c = R + (1 - \tau_L) z_L + (1 - \tau_L) z_K + (\tau_L - \tau_K) x$$

Income Shifting

- Solutions: $h'_{Li}\left(y_L\right)=1- au_L$, $h'_{Ki}\left(y_K\right)=1- au_K$ and $d'_i\left(x
 ight)=\left(au_L- au_K
 ight)$
- Aggregating over all taxpayers:
 - $y_L = y_L (1 \tau_L)$, with elasticity e_L
 - $y_K = y_K (1 \tau_K)$, with elasticity e_K
 - $x = x (\tau_L \tau_K)$, increasing in $\Delta \tau := \tau_L \tau_K$.
- Reported incomes z_L and z_K more elastic than real incomes since react also along avoidance margin.
- Define $a_L = \frac{z_L}{z_L \overline{z}}$ and $a = \frac{z_L + z_K}{z_L + z_K \overline{z}}$

Income Shifting

Theorem

Without shifting, optimal rates are $\tau_K^* = 1/\left(1 + e_K\right)$, $\tau_L^* = 1/\left(1 + ae_L\right)$ and $\tau_L > \tau_K$ iff $a_L e_L < e_K$ (standard Ramsey result)

Theorem

With infinite shifting elasticity, $au_K = au_L = rac{1}{1+a\overline{e}}$ where

$$\overline{e} = \frac{y_L}{y_L + y_K} e_L + \frac{y_K}{y_L + y_K} e_K$$

Theorem

In general, if $a_L e_L < e_K$, then $1/\left(1+ae_L\right) \ge \tau_L > \tau_K \ge 1/\left(1+e_K\right)$. And if $a_L e_L > e_K$, inequality reversed.

Shifting brings τ_L and τ_K closer together, even if e_L and e_K very different.

Outline of the talk

- Standard model with real supply-side response
- Tax avoidance and income shifting responses
 - Pure Avoidance Model
 - Income Shifting Model
- Bargaining and rent-seeking responses
- Empirical evidence
 - US evidence
 - International evidence
 - Summary of scenarios
- Conclusion

Compensation Bargaining Response

Literature Review

- Pay need not equal marginal productivity
 - Entrenchment, bargaining ⇒ overpay
 - Social norms, intolerance for high pay ⇒ underpay
- Few taxation papers with imperfect labor markets. Typically focus on restoring efficiency: Fuest and Huber (1997), Aronsson and Sjogren (2004)
- Some look at redistribution: Hungerbuehler et. al. (2006), Stantcheva (2011), Rothschild and Scheuer (2011)

Compensation Bargaining Response

- Individual *i* receives fraction η of his actual product *y*: $z = \eta y = y + b$ where bargained earnings are $b = (\eta - 1) y$
- Individual utility:

$$u^{i}\left(c,\eta,y\right)=c-h_{i}\left(y\right)-k_{i}\left(\eta\right)$$

where $k_i(\eta)$ increasing and convex.

- *E* (*b*): average bargaining in the economy.
- Important simplifying assumption:
 - any gain/loss from bargaining hits everyone in the economy uniformly (discussion later).
 - paper presents simple bargaining model where bargaining is at expense of profits and firms are uniformly owned by everyone
 - ullet government's demogrant $T\left(0
 ight)$ can fully absorb the bargaining gain or loss

• Individual optimization leads to:

$$h'_{i}(y) = (1 - \tau) \eta$$

 $k'_{i}(\eta) = (1 - \tau) \gamma$

• Defines the aggregate functions

$$y = y (1 - \tau)$$

$$\eta = \eta (1 - \tau)$$

$$b = b (1 - \tau)$$

as increasing functions of the net-of-tax rate.

Compensation Bargaining Response

Elasticities

- Supply side elasticity e_1 : as before $e_1 = rac{dy}{d(1- au)} rac{1- au}{y}$
- Bargaining "elasticity", e_3 : define s as fraction of behavioral response due to bargaining: $s = \frac{db/d(1-\tau)}{dz/d(1-\tau)}$

$$e_3 = \frac{db}{d(1-\tau)} \frac{1-\tau}{z}$$

Total elasticity: e:

$$e = \frac{\partial z}{\partial (1 - \tau)} \frac{1 - \tau}{z} = \frac{e_3}{s}$$

Note that $e = \frac{y}{z}e_1 + e_3$.

Compensation Bargaining Response

Optimal tax

- s can be negative, leading to e_3 negative. Happens if η sufficiently small $(\eta \leq \frac{e_1}{e_1+e_n})$
- ullet s and hence $ullet_3$ always positive if individuals are overpaid $(\eta>1)$

Theorem

The optimal tax rate is

$$au^* = rac{1 + ae_3}{1 + ae} = 1 - rac{a(y/z)e_1}{1 + ae}$$

 au^* decreases with the real elasticity e_1 and total elasticity e, increases with overpayment z/y and with the bargaining elasticity e_3 .

If top earners are overpaid, $\tau^* > 1/(1 + ae_1)$.

Compensation Bargaining

Optimal tax: Comments

- Implementing formula requires knowing, in addition to total e, either e_3 or e_1 and (y/z). Hard!
- ullet Trickle up: If top earners overpaid, lowering tax au extracts resources from lower earners
 - If e = 1, and y = z, optimal tax in pure supply side case is 40%
 - If $e_1 = 0.5$, starting from y = z, optimal tax is 70%
 - If paid twice their marginal product, optimal rate is 85%
- Trickle down: If top earners underpaid, lowering tax τ transfers resources to lower earners
 - \bullet e.g.: if Japan has implicit caps on pay (social norms) optimal τ could be lower

Compensation Bargaining

Open questions and discussion

- Regulation versus taxation? Should the government rather directly regulate pay?
- Differentiated taxation across sectors with different degrees of rent extraction? Hard to measure and to avoid shifting.
- Non uniform external effects: Who bears cost from bargaining? If other high earners, social cost (and taxes) are lower (Rothschild and Scheuer (2011)).

Putting the three elasticities together

Total response = Real economic + Avoidance + Bargaining =

$$e = (y/z) e_1 + e_2 + e_3$$

If start with no rents (y = z) $e = e_1 + e_2 + e_3$ For a given t (tax on sheltered income) optimal tax rate is

$$au^* = rac{1 + au e_2 + ae_3}{1 + au \left(e_1 + e_2 + e_3
ight)}$$

If t can be optimized as well, avoidance elasticity irrelevant:

$$au^* = t = rac{1 + ae_3}{1 + a\left(e_1 + e_3
ight)}$$

If weight g < 1 on top earners, then

$$au^* = rac{1-g+tae_2+ae_3}{1-g+a\left(e_1+e_2+e_3
ight)}$$

Outline of the talk

- Standard model with real supply-side response
- Tax avoidance and income shifting responses
 - Pure Avoidance Model
 - Income Shifting Model
- Bargaining and rent-seeking responses
- Empirical evidence
 - US evidence
 - International evidence
 - Summary of scenarios
- Conclusion

Empirical Evidence: US

Empirical Evidence: US

Table 1: US Evidence on Top Tax Rates, Top Income Shares, and Income Growth

			Income
		Income excluding	including
		capital gains	capital gains
		(1)	(2)
A. 1975-1979 vs. 2004-2008 Comparis	son		
Top Marginal Tax Rate (MTR)	1975-9	70%	70%
	2004-8	35%	35%
Top 1% Income Share	1975-9	8.0%	9.1%
	2004-8	17.7%	21.8%
Elasticity estimate:			
∆ log (top 1% share) / ∆ log (1-Top MTR)		1.03	1.12
B. Elasticity estimation (1913-2008):	log(share) = a + e*log(1-	Top MTR) + c*time + ε	
No time trend		0.25	0.26
		(0.07)	(0.06)
Linear time trend		0.30	0.29
		(0.06)	(0.05)
Number of observations		96	96

Empirical Evidence: US

Total effect and avoidance channel

Strong correlation between top income shares and top tax rates

$$\Rightarrow e$$
 is large

- Almost same for income series including capital gains: shifting is not full story (in short run, a lot of shifting effects, Auerbach (1988), Gordon and Slemrod (2000))
- Other types of tax-exempt compensation ignored here, BUT seems they increased despite tax rates falling
 - Off-shore accounts have not decreased (Zucman (2011))
 - Perks: would have had to be huge in 70s to account for full effect Median CEO pay pre-1970s was \$0.75 (Frydman and Saks (2010)); lower than perks reported in the press today! (Yermack (2006))

 \Rightarrow e_2 small in long-run \Rightarrow e_1+e_3 large

Empirical Evidence: US

Empirical Evidence: US

	Income	Income including capital gains (to control for tax (2)
	excluding	
	capital gains	
	(1)	
C. Effect of Top MTR on income growth	i (1913-2008): log(income) = a + b^lo	g(1-10p W11κ) + c^time + ε
Top 1% real income	0.265	0.261
10p 176 real income	0.200	0.201
Top 176 rear income	(0.047)	(0.041)
Bottom 99% real income		
•	(0.047)	(0.041)
Bottom 99% real income	(0.047) -0.080	(0.041) -0.076
•	(0.047) -0.080 (0.040)	(0.041) -0.076 (0.039)

Empirical Evidence: US

- Separate e_1 from e_3 by examining effect of $(1 top \ tax \ rate)$ on growth of bottom 99%.
 - Strong positive effect on top 1% income growth
 - Negative effect on bottom 99% income growth, zero effect on overall average growth
- Suggests real elasticity $e_1 \approx 0$.
- Problem is validity of this simple OLS: growth could have slowed down for other reasons (and top 1% did not suffer because of tax cuts).

Empirical Evidence: International

Data

- Data from 18 OECD countries 1975-2009
- Construct marginal top tax rates (income tax (national+local), robustness check adds payroll + consumption taxes)
- Top Income Shares from World Top Incomes Database

Questions

- Effect of top tax rates on top 1% share?
- Effect of top tax rates on growth?

Top 1% share and top tax rates around 1975

Top 1% share and top tax rates around 2009

Top 1% share and top tax rates 1975-2009

Top tax rates and Top 1% Income share

Table 2: International Evidence on Top Tax Rates, Top Income Shares, and Income Growth

		_
A. Effect of the Top Marginal Income Tax Rate on Top 1% Income Share		
A1. Cross Country Cross-Sectional Comparisons:		
Regression: log(Top 1% share) = $a + e^*log(1-Top MTR) + \epsilon$		
Elasticity in 1975-9	0.329	
	(0.148)	
Elasticity in 2004-8	1.396	
	(0.381)	
Number of obs.	18	
A2. Cross Country Changes from 1975-9 to 2004-8:		
Regression: $\Delta \log(\text{Top } 1\% \text{ share}) = a + e^* \Delta \log(1-\text{Top MTR}) + \epsilon$		
Elasticity	0.490	
	(0.144)	
Number of observations	18	
A3. Full Time Series analysis (1975-2008):		
Regression: log(Top 1% share) = a + e*log(1-Top MTR) + ε		
No controls	0.561	
	(0.034)	
Time trend control	0.512	
	(0.039)	
Country fixed effects	0.455	
	(0.029)	
Number of observations	518	9

Top tax rates and average growth 1975-2009

Top tax rates and average growth 1975-2009

B. Effect of the Top Marginal Income Tax Rate on real GDP per capita

Regression: log(real GDP per capita) = $a + b*log(1-Top MTR) + c*time + \epsilon$

No country fixed effects	0.027
	(0.036)
Country fixed effects	0.012
	(0.013)
Number of observations	518

 \Rightarrow Weak and positive

Using Growth effect = top 1% share \times e_1 and effect $\leq 0.02 \Rightarrow e_1 \leq 0.2$ Given $e \approx 0.5$. $e_3 \geq 0.3$

Empirical Evidence: International

Discussion of the results I

Macro estimates rely on strong identifying assumptions

- Countries could cut top tax rates when growth expected to slow down (Anglo-saxon countries in 70s?)
- Social norms and tolerance for inequality can drive both top incomes and taxes
- Yet, European countries cut back work hours, which should have reduced their growth more

Empirical Evidence: International

Discussion of the results II

Micro evidence from corporate econ literature confirms hypothesis of non competitively set pay at top:

- Hidden parts of compensation packages and effect of disclosure rules (Bebchuk and Fried (2004), Kuhnen and Zwiebel (2009))
- Reward for positive outcomes outside of CEOs control; no punishment for bad outcomes (Bertrand and Mullainathan (2001))
- Pay decreases when board control increases (Chhaochharia and Grinstein (2009))
- Malpractice widespread, options backdating, spring loading (Yermack (1997), Lie (2005))

Table 3: Synthesis of Various Scenarios

Total elasticity $e = e_1 + e_2 + e_3 =$ 0.5

Scenario 1: Standard supply side tax effects

> 0.5 0.0 0.0

Scenario 2: Tax avoidance effects

(a) current (b) after narrow tax base base broadening $e_1 = 0.2$ $e_1 = 0.2$ $e_2 = 0.3$ $e_2 = 0.1$ $e_2 = 0.0$ $e_3 = 0.0$

Scenario 3: Compensation

bargaining effects e₁ = 0.2 $e_2 =$ 0.0 0.3

Optimal top tax rate $\tau^* = (1 + tae_2 + ae_3)/(1 + ae)$

Pareto coefficient a =	1.5
Alternative tax rate t =	20%

Scenario 1

57%

Scenario 2

(a)
$$e_2$$
=0.3 (b) e_2 =0.1
 τ^* = 62 % τ^* = 71 %

$$\tau^* = 62 \% \quad \tau^* = 71 \%$$

Scenario 3

83%

Table 3: Synthesis of Various Scenarios

Table 3: Synthesis of Various Scenarios

Table 3: Synthesis of Various Scenarios

Outline of the talk

- Standard model with real supply-side response
- 2 Tax avoidance and income shifting responses
 - Pure Avoidance Model
 - Income Shifting Model
- Bargaining and rent-seeking responses
- Empirical evidence
 - US evidence
 - International evidence
 - Summary of scenarios
- Conclusion

Conclusion

- We presented simple model capturing 1.Standard supply side responses 2.Tax avoidance responses 3.Compensation bargaining responses
- Derived optimal tax formula as function of three elasticities: taxable income elasticity no longer a sufficient statistic.
- Empirical analysis suggested that
 - Top income share very sensitive to top tax rates ⇒ overall elasticity e is large
 - Standard real supply side and avoidance channels both seem insufficient.
 - Hard to convincingly establish bargaining channel, but empirical evidence not inconsistent with it

Future work (some in progress!) needed to quantify compensation channel

Real Supply Side Responses: Optimal tax rate derivation

Equivalent to maximizing top tax revenue:

$$T = \tau \left[z \left(1 - \tau \right) - \overline{z} \right]$$

FOC:

$$z - \overline{z} - \tau \frac{dz}{d(1 - \tau)} = 0$$

$$\frac{z - \overline{z}}{z} (1 - \tau) - \tau \frac{dz}{d(1 - \tau)} \frac{1 - \tau}{z} = 0$$

$$\frac{\tau}{1 - \tau} e_1 = \frac{1}{a}$$

Avoidance Responses: Optimal tax rate derivation

Equivalent to maximizing top tax revenue:

$$T = \tau \left[z - \overline{z} \right] + tx$$

FOC for a fixed t:

$$z - \overline{z} - \tau \frac{dz}{d(1-\tau)} + t \frac{dx}{d(\tau-t)} = 0$$

$$z - \overline{z} - \tau \frac{dz}{d(1-\tau)} + st \frac{\partial z}{\partial(1-\tau)} = 0$$

$$\frac{\tau - ts}{1-\tau} e = \frac{1}{a}$$

FOC with respect to t: using that z = y - x

$$x + \left[\tau - t\right] \frac{dx}{d\left(\tau - t\right)} = 0$$

Since $x \ge 0$ and $\tau \ge t$, this can only hold if $\tau = t$ and x = x(0) = 0.

Optimal Tax Derivation: Compensation Channel

Equivalent to maximizing revenue from the top bracket net of bargaining cost (incurred by all N agents in the economy).

$$T = \tau \left(y + b - \overline{z} \right) - NE\left(b \right)$$

If au triggers a change in b, then that change is reflected one-to-one in NE(b). Hence $\frac{db}{d(1- au)} = \frac{NdE(b)}{d(1- au)}$. Hence the FOC for au is:

$$\begin{aligned} y+b-\overline{z}-\tau \frac{dy}{d\left(1-\tau\right)}-\tau \frac{db}{d\left(1-\tau\right)}+\tau \frac{db}{d\left(1-\tau\right)}&=0 \\ \\ \tau \left(\frac{dy}{d\left(1-\tau\right)}+\frac{db}{d\left(1-\tau\right)}\right)-\tau \frac{db}{d\left(1-\tau\right)}&=z-\overline{z} \\ \\ \left[\tau-s\right]\frac{dz}{d\left(1-\tau\right)}&=z-\overline{z} \\ \\ \frac{\left[\tau-s\right]}{1-\tau}e&=\frac{z-\overline{z}}{z}=\frac{1}{a} \end{aligned}$$

can also be rearranged using the fact that $e_3 = se^{-r} \cdot e^{-r} \cdot e^{-r} \cdot e^{-r} \cdot e^{-r}$

Thomas Piketty (PSE), Emmanuel Saez (Ber